Docker学习笔记

🐳 docker学习笔记

本节介绍微服务中关于docker的一些知识,主要包括docker的基本操作,然后就是如何使用DockerFile来自定义镜像,使用Docker-Compose来部署容器,最后构造自己的镜像仓库

1.初识Docker

1.1.什么是Docker

微服务虽然具备各种各样的优势,但服务的拆分通用给部署带来了很大的麻烦。

  • 分布式系统中,依赖的组件非常多,不同组件之间部署时往往会产生一些冲突。
  • 在数百上千台服务中重复部署,环境不一定一致,会遇到各种问题
1.1.1.应用部署的环境

大型项目组件较多,运行环境也较为复杂,部署时会碰到一些问题:

  • 依赖关系复杂,容易出现兼容性问题

  • 开发、测试、生产环境有差异

image-20210731141907366

例如一个项目中,部署时需要依赖于node.js、Redis、RabbitMQ、MySQL等,这些服务部署时所需要的函数库、依赖项各不相同,甚至会有冲突。此时不知道到底要使用哪种依赖才能使得容器所有容器正常运行,给部署带来了极大的困难。

1.1.2.Docker解决依赖兼容问题

而Docker确巧妙的解决了这些问题,Docker是如何实现的呢?

Docker为了解决依赖的兼容问题的,采用了两个手段:

  • 将应用的Libs(函数库)、Deps(依赖)、配置与应用一起打包,容器运行时只依赖操作系统底层的内核,这样就可以做到容器之间运行隔离

  • 将每个应用放到一个隔离容器去运行,避免互相干扰,但是互相之间可以通信

image-20210731142219735

这样打包好的应用包中,既包含应用本身,也保护应用所需要的Libs、Deps,无需在操作系统上安装这些,只依赖底层共有的操作系统内核,自然就不存在不同应用之间的兼容问题了。相当于将共性抽离,特性隔离,这样就可以做到应用之间互不影响,正常运行

虽然解决了不同应用的兼容问题,但是开发、测试等环境会存在差异,操作系统版本也会有差异,怎么解决这些问题呢?

1.1.3.Docker解决操作系统环境差异

要解决不同操作系统环境差异问题,必须先了解操作系统结构。以一个Ubuntu操作系统为例,结构如下:

image-20210731143401460

结构包括:

  • 计算机硬件:例如CPU、内存、磁盘等
  • 系统内核:所有Linux发行版的内核都是Linux,例如CentOS、Ubuntu、Fedora等。内核可以与计算机硬件交互,对外提供内核指令,用于操作计算机硬件。
  • 系统应用:操作系统本身提供的应用、函数库。这些函数库是对内核指令的封装,使用更加方便。

应用于计算机交互的流程如下:

1)应用调用操作系统应用(函数库),实现各种功能

2)系统函数库是对内核指令集的封装,会调用内核指令

3)内核指令操作计算机硬件

Ubuntu和CentOS都是基于Linux内核,无非是系统应用不同,提供的函数库有差异

image-20210731144304990

此时,如果将一个Ubuntu版本的MySQL应用安装到CentOS系统,MySQL在调用Ubuntu函数库时,会发现找不到或者不匹配,就会报错了:

image-20210731144458680

Docker如何解决不同系统环境的问题?

  • Docker将用户程序与所需要调用的系统(比如Ubuntu)函数库一起打包
  • Docker运行到不同操作系统时,直接基于打包的函数库,函数库借助于操作系统的Linux内核来运行,而底层的操作系统内核是相同的,所以不管在什么系统中,docker应用都可以正常运行,因为他只依赖底层的操作系统内核,函数库已经自带了

如图:

image-20210731144820638

docker应用会避开操作系统的函数库,使用自带的函数库来操作操作系统底层的内核,而内核是相通的,所以可以做到跨操作系统

1.1.4.小结

Docker如何解决大型项目依赖关系复杂,不同组件依赖的兼容性问题?

  • Docker允许开发中将应用、依赖、函数库、配置一起打包,形成可移植镜像,这样镜像之间的特性被隔离,底层共同使用的操作系统内核还是共享
  • Docker应用运行在容器中,使用沙箱机制,相互隔离

Docker如何解决开发、测试、生产环境有差异的问题?

  • Docker镜像中包含完整运行环境,包括系统函数库,仅依赖系统的Linux内核,因此可以在任意Linux操作系统上运行

Docker是一个快速交付应用、运行应用的技术,具备下列优势:

  • 可以将程序及其依赖、运行环境一起打包为一个镜像,可以迁移到任意Linux操作系统
  • 运行时利用沙箱机制形成隔离容器,各个应用互不干扰,因为依赖和函数库都打包到了镜像内
  • 启动、移除都可以通过一行命令完成,方便快捷

1.2.Docker和虚拟机的区别

Docker可以让一个应用在任何操作系统中非常方便的运行。而以前我们接触的虚拟机,也能在一个操作系统中,运行另外一个操作系统,保护系统中的任何应用。

两者有什么差异呢?

虚拟机(virtual machine)是在操作系统中模拟硬件设备,然后运行另一个操作系统,比如在 Windows 系统里面运行 Ubuntu 系统,这样就可以运行任意的Ubuntu应用了。

Docker仅仅是封装函数库,并没有模拟完整的操作系统,如图:

image-20210731145914960

对比来看:

image-20210731152243765

小结:

Docker和虚拟机的差异:

  • docker是一个系统进程;虚拟机是在操作系统中的操作系统

  • docker体积小、启动速度快、性能好;虚拟机体积大、启动速度慢、性能一般

1.3.Docker架构

1.3.1.镜像和容器

Docker中有几个重要的概念:

镜像(Image):Docker将应用程序及其所需的依赖、函数库、环境、配置等文件打包在一起,称为镜像。这个就是一个没有运行起来的文件

容器(Container):镜像中的应用程序运行后形成的进程就是容器,只是Docker会给容器进程做隔离,对外不可见。访问时通过端口映射进行访问

一切应用最终都是代码组成,都是硬盘中的一个个的字节形成的文件。只有运行时,才会加载到内存,形成进程。

镜像,就是把一个应用在硬盘上的文件、及其运行环境、部分系统函数库文件一起打包形成的文件包。这个文件包是只读的。

容器呢,就是将这些文件中编写的程序、函数加载到内存中运行,形成进程,只不过要隔离起来。因此一个镜像可以启动多次,形成多个容器进程。

image-20210731153059464

例如你下载了一个QQ,如果我们将QQ在磁盘上的运行文件及其运行的操作系统依赖打包,形成QQ镜像。然后你可以启动多次,双开、甚至三开QQ。

1.3.2.DockerHub

开源应用程序非常多,打包这些应用往往是重复的劳动。为了避免这些重复劳动,人们就会将自己打包的应用镜像,例如Redis、MySQL镜像放到网络上,共享使用,就像GitHub的代码共享一样。

  • DockerHub:DockerHub是一个官方的Docker镜像的托管平台。这样的平台称为Docker Registry。

  • 国内也有类似于DockerHub 的公开服务,比如 网易云镜像服务 阿里云镜像库 等。

我们一方面可以将自己的镜像共享到DockerHub,另一方面也可以从DockerHub拉取镜像:

image-20210731153743354

1.3.3.Docker架构

我们要使用Docker来操作镜像、容器,就必须要安装Docker。

Docker是一个CS架构的程序,由两部分组成:

  • 服务端(server):Docker守护进程,负责处理Docker指令,管理镜像、容器等
  • 客户端(client):通过命令或RestAPI向Docker服务端发送指令。可以在本地或远程向服务端发送指令。

也就是说用户在使用docker时使用的是client,但是内部还经过了server的处理最终才操作到了镜像或容器

如图:

image-20210731154257653

1.3.4.小结

镜像:

  • 将应用程序及其依赖、环境、配置一层一层的打包在一起,底层使用了DockerFile来进行打包,会依赖一个基础镜像,内部包含一些基础的函数库及其指令

容器:

  • 镜像运行起来就是容器,一个镜像可以运行成为多个容器

Docker结构:

  • 服务端:接收命令或远程请求,操作镜像或容器

  • 客户端:发送命令或者请求到Docker服务端

DockerHub:

  • 一个镜像托管的服务器,类似的还有阿里云镜像服务,统称为DockerRegistry

2.Docker的基本操作

2.1.镜像操作

2.1.1.镜像名称

首先来看下镜像的名称组成:

  • 镜名称一般分两部分组成:[repository]:[tag]
  • 在没有指定tag时,默认是latest,代表最新版本的镜像

如图:

image-20210731155141362

这里的mysql就是repository,5.7就是tag,合一起就是镜像名称,代表5.7版本的MySQL镜像。

2.1.2.镜像命令

常见的镜像操作命令如图,要想启动容器,本地必须有镜像:

image-20210731155649535

2.1.3.案例1-拉取、查看镜像

需求:从DockerHub中拉取一个nginx镜像并查看

1)首先去镜像仓库搜索nginx镜像,比如 DockerHub :

image-20210731155844368

2)根据查看到的镜像名称,拉取自己需要的镜像,通过命令:docker pull nginx

image-20210731155856199

3)通过命令:docker images 查看拉取到的镜像

image-20210731155903037

2.1.4.案例2-保存、导入镜像

需求:利用docker save将nginx镜像导出磁盘,然后再通过load加载回来

1)利用docker xx –help命令查看docker save和docker load的语法

例如,查看save命令用法,可以输入命令:

1
docker save --help

结果:

image-20210731161104732

命令格式:

1
docker save -o [保存的目标文件名称] [镜像名称]

2)使用docker save导出镜像到磁盘

运行命令:

1
docker save -o nginx.tar nginx:latest

结果如图:

image-20210731161354344

3)使用docker load加载镜像

先删除本地的nginx镜像:

1
docker rmi nginx:latest

然后运行命令,加载本地文件:

1
docker load -i nginx.tar

结果:

image-20210731161746245

2.2.容器操作

2.2.1.容器相关命令

容器操作的命令如图:

image-20210731161950495

容器保护三个状态:

  • 运行:进程正常运行
  • 暂停:进程暂停,CPU不再运行,并不释放内存
  • 停止:进程终止,回收进程占用的内存、CPU等资源

其中:

  • docker run:创建并运行一个容器,处于运行状态

  • docker pause:让一个运行的容器暂停

  • docker unpause:让一个容器从暂停状态恢复运行

  • docker stop:停止一个运行的容器

  • docker start:让一个停止的容器再次运行

  • docker rm:删除一个容器

2.2.2.案例-创建并运行一个容器

创建并运行nginx容器的命令:

1
docker run --name containerName -p 80:80 -d nginx

命令解读:

  • docker run :创建并运行一个容器
  • –name : 给容器起一个名字,比如叫做mn
  • -p :将宿主机端口与容器端口映射,冒号左侧是宿主机端口,右侧是容器端口
  • -d:后台运行容器
  • nginx:镜像名称,例如nginx
  • 后期还有-v命令,这是用来进行数据挂载的

这里的-p参数,是将容器端口映射到宿主机端口。

默认情况下,容器是隔离环境,我们直接访问宿主机的80端口,肯定访问不到容器中的nginx。

现在,将容器的80与宿主机的80关联起来,当我们访问宿主机的80端口时,就会被映射到容器的80,这样就能访问到nginx了:

image-20210731163255863

2.2.3.案例-进入容器,修改文件

需求:进入Nginx容器,修改HTML文件内容,添加“传智教育欢迎您”

提示:进入容器要用到docker exec命令。

步骤

1)进入容器。进入我们刚刚创建的nginx容器的命令为:

1
docker exec -it mn bash

命令解读:

  • docker exec :进入容器内部,执行一个命令

  • -it : 给当前进入的容器创建一个标准输入、输出终端,允许我们与容器交互

  • mn :要进入的容器的名称

  • bash:进入容器后执行的命令,bash是一个linux终端交互命令,相当于进入容器中执行bash命令打开命令行

2)进入nginx的HTML所在目录 /usr/share/nginx/html

容器内部会模拟一个独立的Linux文件系统,看起来如同一个linux服务器一样

image-20210731164159811

nginx的环境、配置、运行文件全部都在这个文件系统中,包括我们要修改的html文件。

查看DockerHub网站中的nginx页面,可以知道nginx的html目录位置在/usr/share/nginx/html

我们执行命令,进入该目录:

1
cd /usr/share/nginx/html

查看目录下文件:

image-20210731164455818

3)修改index.html的内容

容器内没有vi命令,无法直接修改,我们用下面的命令来修改:

1
sed -i -e 's##Welcome to nginx##传智教育欢迎您##g' -e 's##<head>##<head><meta charset="utf-8">##g' index.html

在浏览器访问自己的虚拟机地址,例如我的是:http://192.168.150.101,即可看到结果:

image-20210731164717604

2.2.4.小结

docker run命令的常见参数有哪些?

  • –name:指定容器名称
  • -p:指定端口映射
  • -d:让容器后台运行

查看容器日志的命令:

  • docker logs
  • 添加 -f 参数可以持续查看日志

查看容器状态:

  • docker ps
  • docker ps -a 查看所有容器,包括已经停止的

2.3.数据卷(容器数据管理)

在之前的nginx案例中,修改nginx的html页面时,需要进入nginx内部。并且因为没有编辑器,修改文件也很麻烦。

这就是因为容器与数据(容器内文件)耦合带来的后果,也就是说文件或者数据保存到了容器内部,访问或者修改必须进入容器内部,存在诸多不便。

image-20210731172440275

要解决这个问题,必须将数据与容器解耦,这就要用到数据卷了。

2.3.1.什么是数据卷

**数据卷(volume)**是一个虚拟目录,指向宿主机文件系统中的某个目录。

image-20210731173541846

一旦完成数据卷挂载,对容器的一切操作都会作用在数据卷对应的宿主机目录了。

这样,我们操作宿主机的/var/lib/docker/volumes/html目录,就等于操作容器内的/usr/share/nginx/html目录了,相当于做了绑定,运行容器时进行数据卷的挂载,这个数据卷是一个虚拟的,实际上是挂载到了本机上的一个目录,与容器隔离

2.3.2.数据集操作命令

数据卷操作的基本语法如下:

1
docker volume [COMMAND]

docker volume命令是数据卷操作,根据命令后跟随的command来确定下一步的操作:

  • create 创建一个volume
  • inspect 显示一个或多个volume的信息
  • ls 列出所有的volume
  • prune 删除未使用的volume
  • rm 删除一个或多个指定的volume
2.3.3.创建和查看数据卷

需求:创建一个数据卷,并查看数据卷在宿主机的目录位置

① 创建数据卷

1
docker volume create html

② 查看所有数据

1
docker volume ls

结果:

image-20210731173746910

③ 查看数据卷详细信息卷

1
docker volume inspect html

结果:

image-20210731173809877

可以看到,我们创建的html这个数据卷关联的宿主机目录为/var/lib/docker/volumes/html/_data目录。

创建的虚拟数据卷最后都会被挂载到本机中的/var/lib/docker/volumes中,之后需要将容器中的某个目录与这个数据卷之间进行挂载

小结

数据卷的作用:

  • 将容器与数据分离,解耦合,方便操作容器内数据,保证数据安全

数据卷操作:

  • docker volume create:创建数据卷
  • docker volume ls:查看所有数据卷
  • docker volume inspect:查看数据卷详细信息,包括关联的宿主机目录位置
  • docker volume rm:删除指定数据卷
  • docker volume prune:删除所有未使用的数据卷
2.3.4.挂载数据卷

我们在创建容器时,可以通过 -v 参数来挂载一个数据卷到某个容器内目录,命令格式如下:

1
2
3
4
5
docker run \
  --name mn \
  -v html:/root/html \ # 这一句的意思是将html数据卷挂载到容器中的/root/html上
  -p 8080:80
  nginx \

这里的-v就是挂载数据卷的命令:

  • -v html:/root/htm :把html数据卷挂载到容器内的/root/html这个目录中,一般冒号前就是本机,冒号后就是容器内,之后想要修改容器内的/root/html目录,只需要修改数据卷对应的宿主机目录即可,也就是/var/lib/docker/volumes/html/_data
2.3.5.案例-给nginx挂载数据卷

需求:创建一个nginx容器,修改容器内的html目录内的index.html内容

分析:上个案例中,我们进入nginx容器内部,已经知道nginx的html目录所在位置/usr/share/nginx/html ,我们需要把这个目录挂载到html这个数据卷上,方便操作其中的内容。

提示:运行容器时使用 -v 参数挂载数据卷

步骤:

① 创建容器并挂载数据卷到容器内的HTML目录

1
docker run --name mn -v html:/usr/share/nginx/html -p 80:80 -d nginx

② 进入html数据卷所在位置,并修改HTML内容

1
2
3
4
5
6
## 查看html数据卷的位置
docker volume inspect html
## 进入该目录在,这个目录位于宿主机上
cd /var/lib/docker/volumes/html/_data
## 修改文件
vi index.html
2.3.6.案例-给MySQL挂载本地目录

容器不仅仅可以挂载数据卷,也可以直接挂载到宿主机目录上。关联关系如下:

  • 带数据卷模式:宿主机目录 –> 数据卷 —> 容器内目录
  • 直接挂载模式:宿主机目录 —> 容器内目录

如图:

image-20210731175155453

语法

目录挂载与数据卷挂载的语法是类似的:

  • -v [宿主机目录]:[容器内目录]
  • -v [宿主机文件]:[容器内文件]
2.3.7.小结

docker run的命令中通过 -v 参数挂载文件或目录到容器中:

  • -v volume名称:容器内目录

  • -v 宿主机文件:容器内文件

  • -v 宿主机目录:容器内目录

  • 数据卷挂载耦合度低,由docker来管理目录,但是目录较深,不好找

  • 目录挂载耦合度高,需要我们自己管理目录,不过目录容易寻找查看

3.Dockerfile自定义镜像

常见的镜像在DockerHub就能找到,但是我们自己写的项目就必须自己构建镜像了。

而要自定义镜像,就必须先了解镜像的结构才行。

3.1.镜像结构

镜像是将应用程序及其需要的系统函数库、环境、配置、依赖一层一层打包而成。所以说镜像有层级关系,镜像之间如果前几层是相同的内容,那么完全可以将前几层打包成一个基础镜像,然后其余的镜像依赖这个基础镜像就可以减少一些繁杂的操作

我们以MySQL为例,来看看镜像的组成结构:

image-20210731175806273

简单来说,镜像就是在系统函数库、运行环境基础上,添加应用程序文件、配置文件、依赖文件等组合,然后编写好启动脚本打包在一起形成的文件。

我们要构建镜像,其实就是实现上述打包的过程。一层一层的进行打包操作

3.2.Dockerfile语法

构建自定义的镜像时,并不需要一个个文件去拷贝,打包。

我们只需要告诉Docker,我们的镜像的组成,需要哪些BaseImage、需要拷贝什么文件、需要安装什么依赖、启动脚本是什么,将来Docker会帮助我们构建镜像。

而描述上述信息的文件就是Dockerfile文件。

Dockerfile就是一个文本文件,其中包含一个个的指令(Instruction),用指令来说明要执行什么操作来构建镜像。每一个指令都会形成一层Layer。

image-20210731180321133

更新详细语法说明,请参考官网文档: https://docs.docker.com/engine/reference/builder

3.3.构建Java项目

3.3.1.基于Ubuntu构建Java项目

需求:基于Ubuntu镜像构建一个新镜像,运行一个java项目

其中的内容如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
## 指定基础镜像
FROM ubuntu:16.04
## 配置环境变量,JDK的安装目录
ENV JAVA_DIR=/usr/local

## 拷贝jdk和java项目的包
COPY ./jdk8.tar.gz $JAVA_DIR/
COPY ./docker-demo.jar /tmp/app.jar

## 安装JDK
RUN cd $JAVA_DIR \
 && tar -xf ./jdk8.tar.gz \
 && mv ./jdk1.8.0_144 ./java8

## 配置环境变量
ENV JAVA_HOME=$JAVA_DIR/java8
ENV PATH=$PATH:$JAVA_HOME/bin

## 暴露端口
EXPOSE 8090
## 入口,java项目的启动命令
ENTRYPOINT java -jar /tmp/app.jar

运行命令就可以打包好一个镜像:

1
docker build -t javaweb:1.0 .

可以发现,镜像的打包操作主要是给java项目构建一个运行的jdk环境,jdk环境底层依赖一个ubuntu的系统,这样一层一层的打包之后就可以形成一个镜像,后期运行这个镜像就相当于运行了一个java项目,这个java项目就是一个隔离的容器

相当于使用指令指定java项目运行所需要的一切条件,之后就可以打包成一个镜像,镜像运行时就自带了所需要的环境

3.3.2.基于java8构建Java项目

虽然我们可以基于Ubuntu基础镜像,添加任意自己需要的安装包,构建镜像,但是却比较麻烦。所以大多数情况下,我们都可以在一些安装了部分软件的基础镜像上做改造。相当于简化了一部分工作

例如,构建java项目的镜像,可以在已经准备了JDK的基础镜像基础上构建。

需求:基于java:8-alpine镜像,将一个Java项目构建为镜像

内容如下:

1
2
3
4
FROM java:8-alpine
COPY ./app.jar /tmp/app.jar
EXPOSE 8090
ENTRYPOINT java -jar /tmp/app.jar

可以发现此时构建一个java项目的镜像就会变得无比简单,因为基础镜像变成了一个拥有jdk环境的linux系统,此时项目可以依赖于这个基础镜像直接运行

3.4.小结

小结:

  1. Dockerfile的本质是一个文件,通过指令描述镜像的构建过程

  2. Dockerfile的第一行必须是FROM,从一个基础镜像来构建

  3. 基础镜像可以是基本操作系统,如Ubuntu。也可以是其他人制作好的镜像,例如:java:8-alpine,构建镜像时必须有一个基础镜像

4.Docker-Compose

Docker Compose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器!这类似于一个部署工具,相当于将多个docker run编写到了一个文件中,知识语法不同

image-20210731180921742

4.1.初识DockerCompose

Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。格式如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
version: "3.8"
 services:
  mysql:
    image: mysql:5.7.25
    environment:
     MYSQL_ROOT_PASSWORD: 123 
    volumes:
     - "/tmp/mysql/data:/var/lib/mysql"
     - "/tmp/mysql/conf/hmy.cnf:/etc/mysql/conf.d/hmy.cnf"
  web:
    build: .
    ports:
     - "8090:8090"

上面的Compose文件就描述一个项目,其中包含两个容器:

  • mysql:一个基于mysql:5.7.25镜像构建的容器,并且挂载了两个目录
  • web:一个基于docker build临时构建的镜像容器,映射端口时8090

DockerCompose的详细语法参考官网:https://docs.docker.com/compose/compose-file/

其实DockerCompose文件可以看做是将多个docker run命令写到一个文件,只是语法稍有差异。运行这个文件就可以自动部署多个容器

4.3.部署微服务集群

需求:将之前学习的cloud-demo微服务集群利用DockerCompose部署

4.3.1.compose文件

内容如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
version: "3.2"

services:
  nacos:
    image: nacos/nacos-server
    environment:
      MODE: standalone
    ports:
      - "8848:8848"
  mysql:
    image: mysql:5.7.25
    environment:
      MYSQL_ROOT_PASSWORD: 123
    volumes:
      - "$PWD/mysql/data:/var/lib/mysql"
      - "$PWD/mysql/conf:/etc/mysql/conf.d/"
  userservice:
    build: ./user-service
  orderservice:
    build: ./order-service
  gateway:
    build: ./gateway
    ports:
      - "10010:10010"

可以看到,其中包含5个service服务,每个服务都有其基本的配置,每个服务都是一个镜像, 其内部的配置已经编写好了:

  • nacos:作为注册中心和配置中心
    • image: nacos/nacos-server: 基于nacos/nacos-server镜像构建
    • environment:环境变量
      • MODE: standalone:单点模式启动
    • ports:端口映射,这里暴露了8848端口
  • mysql:数据库
    • image: mysql:5.7.25:镜像版本是mysql:5.7.25
    • environment:环境变量
      • MYSQL_ROOT_PASSWORD: 123:设置数据库root账户的密码为123
    • volumes:数据卷挂载,这里挂载了mysql的data、conf目录,其中有我提前准备好的数据
  • userserviceorderservicegateway:都是基于Dockerfile临时构建的
4.3.2.修改微服务配置

因为微服务将来要部署为docker容器,而容器之间互联不是通过IP地址,而是通过容器名。这里我们将order-service、user-service、gateway服务的mysql、nacos地址都修改为基于容器名的访问。

如下所示:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
spring:
  datasource:
    url: jdbc:mysql://mysql:3306/cloud_order?useSSL=false
    username: root
    password: 123
    driver-class-name: com.mysql.jdbc.Driver
  application:
    name: orderservice
  cloud:
    nacos:
      server-addr: nacos:8848 ## nacos服务地址
4.3.3.打包

接下来需要将我们的每个微服务都打包。因为之前查看到Dockerfile中的jar包名称都是app.jar,因此我们的每个微服务都需要用这个名称,项目打包后的jar包名称可以修改。

可以通过修改pom.xml中的打包名称来实现,每个微服务都需要修改:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
<build>
  <!-- 服务打包的最终名称 -->
  <finalName>app</finalName>
  <plugins>
    <plugin>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-maven-plugin</artifactId>
    </plugin>
  </plugins>
</build>
4.3.4.部署

部署:

进入cloud-demo目录,然后运行下面的命令:

1
docker-compose up -d

这样就完成了微服务集群的部署,主要是编写好docker-compose.yml文件,然后准备好相应的jar包,每一个微服务项目都编写好自己的DockerFile

5.Docker镜像仓库

5.1.搭建私有镜像仓库

搭建镜像仓库可以基于Docker官方提供的DockerRegistry来实现。

官网地址:https://hub.docker.com/_/registry

5.1.1.简化版镜像仓库

Docker官方的Docker Registry是一个基础版本的Docker镜像仓库,具备仓库管理的完整功能,但是没有图形化界面。

搭建方式比较简单,命令如下:

1
2
3
4
5
6
docker run -d \
    --restart=always \
    --name registry	\
    -p 5000:5000 \
    -v registry-data:/var/lib/registry \
    registry

命令中挂载了一个数据卷registry-data到容器内的/var/lib/registry 目录,这是私有镜像库存放数据的目录。

访问http://YourIp:5000/v2/_catalog 可以查看当前私有镜像服务中包含的镜像

5.1.2.带有图形化界面版本

使用DockerCompose部署带有图象界面的DockerRegistry,命令如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
version: '3.0'
services:
  registry:
    image: registry
    volumes:
      - ./registry-data:/var/lib/registry
  ui:
    image: joxit/docker-registry-ui:static
    ports:
      - 8080:80
    environment:
      - REGISTRY_TITLE=传智教育私有仓库
      - REGISTRY_URL=http://registry:5000
    depends_on:
      - registry

可以发现这就是在原来的没有ui界面的镜像上构建一个新的镜像,这个新镜像拥有ui

5.1.3.配置Docker信任地址

我们的私服采用的是http协议,默认不被Docker信任,所以需要做一个配置:

1
2
3
4
5
6
7
8
# 打开要修改的文件
vi /etc/docker/daemon.json
# 添加内容:
"insecure-registries":["http://192.168.150.101:8080"]
# 重加载
systemctl daemon-reload
# 重启docker
systemctl restart docker

5.2.推送、拉取镜像

推送镜像到私有镜像服务必须先tag,步骤如下:

① 重新tag本地镜像,名称前缀为私有仓库的地址:192.168.150.101:8080/

1
docker tag nginx:latest 192.168.150.101:8080/nginx:1.0 

② 推送镜像

1
docker push 192.168.150.101:8080/nginx:1.0 

③ 拉取镜像

1
docker pull 192.168.150.101:8080/nginx:1.0 

总结

本节中介绍了一些docker的基础知识,从镜像到容器的运行,如何构建镜像,如何使用docker-compose工具同时部署多个容器以及最后的搭建私有镜像仓库都进行了介绍,其主要的原理就是将一个一个的容器看做是一个轻量级的操作系统,内部运行了一个单独的服务,这些容器底层依赖同一个操作系统内核,这样既做到了轻量级又做到了隔离,容器之间的通信可以通过端口的方式实现